Installation & Operating Instructions

165LRJS (without test point)

166LRJS (with test point)

Loadbreak Elbow Connectors with Jacket Seal

CONTENTS: Elbow Connector Housing, Compression Lug, Probe, Probe Wrench, Lubricant, 3-Sealing Strips

Installation/Operating Instructions.

The 165LRJS (without test point) and 166LRJS (with test point) are designed to terminate UD cable having concentric neutral and extruded insulation shielding. The elbow provides an operating interface for connecting to an Elastimold 15kV class (8.3kV phase-to-ground and 14.4kV phase-to-phase) 200 ampere loadbreak bushing or accessory device with fault close rating of 10,000 amperes RMS symmetrical. Designed with a fold down extension on the cable entrance for sealing to the jacket of jacketed cable. When other types of UD cable are to be terminated, an appropriate Elastimold cable shield or grounding device must be used.

DANGER

All apparatus must be de-energized during installation or removal of part(s) except for test point caps and indicators that can be installed and operated energized.

After installation loadbreak products can be operated energized per operating instructions. All deadbreak connectors must be de-energized before operating. All apparatus must be installed and operated in accordance with individual user, local, and national work rules. These instructions do not attempt to provide for every possible contingency. Do not touch or move energized products.

“Loadbreak connectors must be operated with a full insulated “hotstick” type live–line tool.” Consult the company’s safe work practices for the required live–line tool length.

FOR MORE INFORMATION ON PARTS, INSTALLATION RATINGS AND COMPATIBILITY, CALL THE NEAREST ELASTIMOLD OFFICE.

WARRANTY: Thomas & Betts warrants that this product will be free from defects in materials and workmanship for the period of two (2) years from the date of purchase. Upon prompt notification of any warranted defect, Thomas & Betts will, at its option, repair, replace or refund the purchase price. Proof of purchase is required. Unauthorized modification or improper installation will void all warranties.

Limitations and Exclusions: The above warranty is the sole warranty concerning this product, and is in lieu of all other warranties express or implied, including but not limited to any implied warranty of Marchatibility or fitness for a particular purpose, which are specifically disclaimed. Liability for breach of the above warranty is limited to cost of repair or replacement of the product, and under no circumstances will Thomas & Betts be liable for any indirect, special, incidental or consequential damages.

IMPORTANT

1. Check contents of package to ensure they are complete and undamaged.
2. Check all components to ensure proper fit with cable and/or mating products.
3. Check threads by threading probe into compression lug. If resistance is encountered prior to full assembly, check for damage and replace damaged component.
4. Read entire installation instructions before starting.
5. Have all required tools at hand and maintain cleanliness throughout the procedure.

Caution: If test point cap is not installed, lubricate cap and test point and install cap.
STEP 1 CABLE TRAINING

A. Train cable to ensure slack for ease of operation.
B. To facilitate connection of the neutral to the tank ground and hotstick operation, an extra length of concentric neutral wires or grounding braid wire is required. One method is to pull extra cable to 24” – 26” beyond the centerline of the bushing, place a tape mark at the centerline of the bushing. Then remove outer jacket 7-3/4” to 8” further back from the tape mark. Another method is to proceed to “D” and connect the neutral wires to the tank ground with a jumper or braid.
C. Unwrap the neutral wire back past the bushing centerline.
D. Cut excess cable squarely at the centerline of the bushing.

STEP 2 CABLE PREPARATION

(Use cable cut back template for dimensional guide.)

A. Wrap one strip of mastic, stretching slightly, around jacket.
B. Bend all of the neutral wires straight back over the mastic and along the cable. Press wires into the mastic.
C. Wrap the second strip of mastic completely around the outer jacket, overlapping the neutral wires imbedded into the first mastic strip. Use the third strip of mastic, if needed, to build-up the outer diameter in the area of the first mastic location. Cover all mastic with vinyl tape.
D. Remove insulation shield and insulation from the cable end. Cut squarely taking care not to nick conductor.
E. Wire brush bare aluminum conductors and immediately install compression lug. Rotate to spread inhibitor. Position compression lug so the CONTACT THREADED HOLE ALIGNS WITH THE BUSHING BORE. (Refer to crimp chart packaged with compression lug for recommended crimp tool information.) Start crimp at the crimp line mark. Rotate each successive crimp. Carefully wipe excessive inhibitor from the outside of the lug and cable.
F. Remove insulation shield as shown. Bevel insulation end 1/8” max.
G. Thoroughly clean insulation to remove all traces of conductive residue.
STEP 3 ELBOW ASSEMBLY
A. Lubricate the cable insulation and inside the elbow housing with the lubricant supplied. DO NOT SUBSTITUTE. Other lubricants may be harmful to this product or its mating product(s). Keep insulation clean of dirt and grime.
B. Slide the elbow connector onto the cable with a back and forth twisting motion. Wipe off all excess grease.
C. Align elbow with compression lug’s threaded hole.
D. Thread probe into lug by hand, taking care not to cross-thread. The probe must turn freely for approximately four turns before becoming snug. Tighten with wrench until wrench bends.

STEP 4 CONCENTRIC NEUTRAL CONNECTION
A. Pull the hood over the concentric neutral seal area on the cable by pulling the tabs and/or rolling the seal down.
B. Using a separate copper wire (No. 14 AWG / 2.5mm) or equivalent, insert one end through the grounding eye on the elbow. Twist tight taking care not to damage the eye.
C. Twist all neutral wires and connect to ground using appropriate connector. Provide adequate slack in wires for elbow operation.

STEP 5 CONNECT ELBOW AND BUSHING PLUG
A. Lubricate the receptacle portion of the elbow connector and the mating bushing with the lubricant supplied. LUBRICATE ONLY IF THE TRANSFORMER AND ELBOW ARE KNOWN TO BE DE-ENERGIZED.
B. Operate per following instructions. DO NOT OPERATE BY HAND.
OPERATING INSTRUCTIONS

Before Loadmake or Loadbreak Operation:

Loadbreak connectors must be operated with a full insulated “hotstick” type live-line tool. Consult the company’s safe work practices for the required live-line length.

Area must be clear of obstructions or contaminants that would interfere with the operation of the connector. This position should allow you to establish firm footing and enable you to grasp the hotstick tool securely, maintaining positive control over the movement of the loadbreak connector before, during and directly after the operating sequence. Because of the control, speed and force required to engage or disengage the elbow, certain operating positions are more advantageous than others. If there is some question as to proper operating position, it is recommended that the connectors be operated de-energized. Do not connect two different phases of a multiple-phase system. Before closing a single-phase loop, make certain both ends of the loop are the same phase.

LOADMAKE OPERATION

1. Area must be clear of obstructions or contaminants that would interfere with the operation of the connector.
2. In preparing bushing for elbow connector, remove insulated cap by attaching hotstick tool to the insulated cap pulling eye, and following the instructions for this accessory, remove from bushing.
3. Securely fasten a hotstick to the loadbreak connector pulling eye.
4. After establishing firm footing and positive control of the elbow connector, withdraw the elbow from the accessory device on the apparatus parking stand with a fast, straight, firm motion being careful not to place the elbow connector near a ground plane. Check appropriate accessory device operating instructions to be sure that the device is rated for energized operation.
5. Place the elbow connector receptacle area over the bushing plug, inserting the elbow male contact (arc follower portion) into the bushing until the first slight resistance is felt. Resistance is felt when the arc follower portion of the male contact first meets the female contact of the bushing (at this point the contacts are approximately 2” apart). **DO NOT HOLD IN THIS POSITION BUT IMMEDIATELY PUSH THE ELBOW HOME WITH A FAST, FIRM, STRAIGHT MOTION.** Apply sufficient force to engage the internal lock on the elbow connector and bushing interface.

Fault Close

1. It is not recommended that operations be made on known faults.
2. If a fault is experienced, both the elbow connector and the bushing plug must be replaced.

LOADBREAK OPERATION

1. Place desired accessory device on apparatus parking stand. Refer to appropriate operating instructions for accessory device to be used. Be certain it is rated for energized operation.
2. Firmly tighten a hotstick to the loadbreak connector pulling eye.
3. Without exerting any pulling force, slightly rotate the connector clockwise in order to break surface friction prior to disconnection.
4. Withdraw the connector from the bushing with a fast, firm, straight motion, being careful not to place the connector near a ground plate.
5. Place connector on appropriate accessory device, following the operating instructions for that accessory.

VOLTAGE TEST ON 166LRJS

ELASTIMOLD connectors equipped with an integral capacitance test point can be used to establish whether or not the circuit is energized. When using the test point, complete the following steps:

1. Remove test point cap with a hotstick. When removing cap, PEEL OFF AT AN ANGLE rather than pulling directly in line with the test point assembly.
2. **WARNING: THE VOLTAGE TEST POINT IS A CAPACITANCE DEVICE, IT IS NOT DIRECTLY CONNECTED TO THE CONDUCTOR.** Do not use conventional voltage measuring equipment. Follow the manufacturer’s directions for the meter that is used. Test with a suitable sensing device, made for use with separable connectors manufactured with capacitive test points, to determine if cable is energized. Contamination, moisture, dirt, etc. around the test point or use of the wrong measuring equipment can provide a false “no voltage” indication on an energized elbow. To prevent serious or fatal injury treat the elbow as energized until the “no voltage” test point indication is confirmed by other means.
3. After voltage detection has been made, clean and lubricate the inside surface of the cap with silicone grease and replace it on the test point.